If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+x^2=140
We move all terms to the left:
4x^2+x^2-(140)=0
We add all the numbers together, and all the variables
5x^2-140=0
a = 5; b = 0; c = -140;
Δ = b2-4ac
Δ = 02-4·5·(-140)
Δ = 2800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2800}=\sqrt{400*7}=\sqrt{400}*\sqrt{7}=20\sqrt{7}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-20\sqrt{7}}{2*5}=\frac{0-20\sqrt{7}}{10} =-\frac{20\sqrt{7}}{10} =-2\sqrt{7} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+20\sqrt{7}}{2*5}=\frac{0+20\sqrt{7}}{10} =\frac{20\sqrt{7}}{10} =2\sqrt{7} $
| -7+x-5x=-27 | | 175000=1.03x | | 8p−1=5p−1+3p | | 6x^2-22=33 | | 16=18−2q | | 32-7x=15 | | 106=-263-9x | | -3/4(16a-12)=57 | | 12^2+16^2=c^2 | | 78=6e | | t/4+(t)/3=7/12 | | 4(2y+7)=65 | | 30x+30=20x-180 | | -5704.64=-73.8x | | 18=4+3(f-9) | | 6a÷5=5 | | X+2(x-1)=4x+5 | | 3x/7-(2)/7=10/7 | | 22+15x=150 | | x+17=74.8 | | 345=-3x+6(2x+41) | | 6(-x+9)=47 | | 4s+9-3=25 | | X+139=132x | | e9e+4=−5e+14+13 | | (8-4p)=32 | | 2c+c+5=23 | | 6-(-x+9)=47 | | (2w+3)/3=1 | | -5x+16+7x=2(x+8) | | (x+40)60=360 | | 8n-(3n-8)=27 |